פונקציית ויירשטראס

כל מה שרצית לדעת על פונקציית ויירשטראס:
פונקציית ויירשטראס היא הדוגמה הראשונה שפורסמה לפונקציה רציפה בכל נקודה על הישר הממשי אך לא גזירה באף נקודה.
לפי משפט הקטגוריה של בייר, אוסף הפונקציות הרציפות הגזירות בנקודה אחת לפחות הוא קבוצה מקטגוריה ראשונה.
בצורה פשטנית אומר המשפט כי "רוב" הפונקציות הרציפות אינן גזירות באף נקודה, אולם המשפט אינו מצביע על פונקציה מסוימת כזו.
הדוגמה הראשונה שפורסמה לפונקציה כזו היא זו שנתן קארל ויירשטראס בשנת 1872 (היסטורית, הדוגמה של ויירשטראס קדמה להוכחת משפט הקטגוריה).
הגדרת הפונקציה היא: כאשר ו b שלם אי זוגי כך ש -.
גרף עבור פונקציית ויירשטרס הבאה: :


פותר תשחצים ותשבצים עכשיו לאנדרואיד ולאייפון! כל ההגדרות וכל המושגים במקום אחד.

פותר התשחץ פותר התשחצים

פונקציית ויירשטרס היא מעין פרקטל, מאחר שהיא מורכבת מאינסוף עותקים של הרמוניה בסיסית, העוברת שני שינויי סקלה (במשרעת ובתדירות).
ממד האוסדורף של הפונקציה קטן או שווה ל-; הערך המדויק אינו ידוע, אבל משערים שהוא שווה לחסם העליון.
קל לראות שהפונקציה רציפה, משום שהטור מתכנס במידה שווה.
ההוכחה שהפונקציה אינה גזירה באף נקודה מורכבת יותר.

נלקח מויקיפדיה

הגדרות נוספות הקשורות לפונקציית ויירשטראס:
פונקציות פתולוגיות
פרקטלים