משפט המיון של החבורות הפשוטות הסופיות


כל מה שרצית לדעת על משפט המיון של החבורות הפשוטות הסופיות:
משפט המיון של החבורות הפשוטות הסופיות הוא משפט מתמטי, שעניינו עריכת רשימה מלאה של כל החבורות הפשוטות הסופיות עד כדי איזומורפיזם.
החבורות הפשוטות הן אבני בניין, שמהן ניתן לבנות במובן מסוים את כל החבורות הסופיות.
העבודה על המשפט נמשכה כמה עשרות שנים, השתתפו בה כמאה מתמטיקאים, והיא משתרעת על-פני 500 מאמרים בכתבי עת מקצועיים, הכוללים כ- 15,000 עמודים.
משפט המיון הוא משפט מרכזי בתורת החבורות הסופיות, והוא מהווה אחד ההשגים הגדולים ביותר של המתמטיקה במאה העשרים.
ההוכחה נעזרת בכלים שפותחו בתורת החבורות מאז לידתה, אולם לצעד הראשון בהוכחה נחשב פרסומו של משפט פייט-תומפסון, הקובע שאין חבורות פשוטות לא-אבליות סופיות מסדר אי-זוגי, ב-1963.
הוכחת המשפט, כ-250 עמודים עמוסים בתורת ההצגות, הדגימה לראשונה את נחיצותן של הוכחות מורכבות בתחום המיון, ואת יעילותם של הכלים הקלאסיים בטיפול בבעיות כאלה.
במתמטיקה, שבה העבודה נעשית לרוב על ידי יחידים או בצוותים קטנים, משפט המיון הוא דוגמה ייחודית ל"מדע גדול", מבנה פעולה שכיח במדעים הניסויים, שבו משתפים פעולה מדענים רבים להשגת מטרה משותפת.
בשנות השבעים רוכז המאמץ על ידי דניאל גורנשטיין, שהציע חלוקת עבודה ומינה חוקרים לעבוד על חלקים מסוימים במשפט.
גורנשטיין הכריז בפומבי על סיום ההוכחה ב-1983, אף על פי שבפועל נותר באותה עת כמה פערים (המשמעותי שביניהם, מיון החבורות מטיפוס quasithin, נסגר רק ב-2004 ‏).
פערים אלה, ואף מורכבותה יוצאת הדופן של ההוכחה גרמה לכך שרבים, ובהם ז'אן-פייר סר, פקפקו בשלמותו של המשפט.
חוסר שביעות הרצון הוליד את פרויקט "הדור השני" שמטרתו לכתוב את ההוכחה מחדש, בסדרה של 11 ספרים.
בתוכנית זו מבקשים לנצל יתרונות שלא עמדו לרשות מפתחי ההוכחה המקורית, כגון הניסוח המדויק של התוצאה שאותה מבקשים להוכיח.
באמצעות משפט המיון, אפשר לאשר תכונות של חבורות פשוטות על ידי בדיקה של כל המקרים.
לדוגמה, הבדיקה מראה שכל חבורה פשוטה סופית נוצרת על ידי שני איברים, למרות שלא ידועה דרך ישירה להוכיח טענה זו.

נלקח מויקיפדיה

הגדרות נוספות הקשורות למשפט המיון של החבורות הפשוטות הסופיות:
משפטים בתורת החבורות